摘 要 文章結合廣州市“倉邊復建綜合樓項目”工程施工監測方案,對受緊鄰基坑施工擾動影響的運行中地鐵隧道變形的動態監測方法進行了分析,采用TCA2003全站儀的全自動動態監測系統,可以24 h無人值守、連續監測運行中的地鐵隧道變形,且每次監測可在地鐵運行間隔內迅速完成。監測到的數據可以實時提供給施工方,以指導當前及下一步的施工,在工程應用中取得了良好的效果。
關鍵詞 地鐵隧道 連續運行 基坑開挖 變形動態監測
1 概述
在我國已有地鐵的城市中,地鐵沿線(非常靠近地鐵隧道)的深基坑越來越多,如何在基坑開挖中保護正在運行中的地鐵隧道,是一個十分現實的問題。采用信息化施工及監測方法,可以有效地指導基坑施工過程,施工中采用的時空效應法、逆作法、注漿法和基坑加固方法等均可達到保護鄰近隧道、控制變形的目的。而常規的地鐵變形監測如連通管法、巴塞特法等,在運行的地鐵隧道中進行監測相當困難,主要是因為地鐵運行間隔很短,運行期間絕對不允許測量人員進入,為此,須有一種簡便的、無人值守、自動的動態監測方法,可在很短的時間間隔內,迅速完成隧道的變形監測,并為鄰近基坑的施工提交監測數據。
廣州市 “倉邊復建綜合樓項目”與廣州地鐵1號線平行,西側基坑距區間隧道(公園前站~農講所站)北線最近處約
2 自動化動態監測系統
2.1 監測要求
由于地鐵隧道在一天中的三分之二以上的時間是處于全封閉的運營狀態,絕對不允許監測人員進入隧道內工作,所以要求必須在隧道內設置自動化監測系統代替人工操作,實現對隧道水平、垂直位移的連續、精確監測。考慮到地鐵運行的間隔很短,所采用的監測系統應能在3~5 min內完成隧道(受影響的區間段)的變形監測,以掌握基坑開挖施工引起地鐵1號線隧道變形規律及特性。
2.2 監測范圍
地鐵1號線下行線“農講所站~公園前站”區間隧道沿基坑的
2.3 自動化動態監測系統的構成
一個完整的自動化動態監測系統是指在無需操作人員干預的條件下,實現自動觀測、記錄、處理、存儲、報表編制、預警預報等功能,它由一系列的軟件和硬件構成,整個系統配置包括:TCA自動化全站儀、棱鏡、通訊電纜及供電電纜、計算機與專用軟件。
TCA自動化全站儀能夠自動整平、自動調焦、自動正倒鏡觀測、自動進行誤差改正、自動記錄觀測數據,其獨有的ATR(Automatic Target Recognition,自動目標識別)模式,使全站儀能進行自動目標識別,操作人員一旦粗略瞄準棱鏡后,全站儀就可搜尋到目標,并自動瞄準,不再需要精確瞄準和調焦,大大提高工作效率。
TCA2003是Leica TCA自動化全站儀中的一種(見圖1),該儀器測角精度為0.5〞,測距精度為